Data Science Research Methods: Python Edition

Data Science Research Methods: Python Edition

Microsoft DAT273x-LAAS

Free of Charge

Get hands-on experience with the science and research aspects of data science work, from setting up a proper data study to making valid claims and inferences from data experiments.

Data scientists are often trained in the analysis of data. However, the goal of data science is to produce a good understanding of some problem or idea and build useful models on this understanding. Because of the principle of "garbage in, garbage out," it is vital that a data scientist know how to evaluate the quality of information that comes into a data analysis. This is especially the case when data are collected specifically for some analysis (e.g., a survey).

In this course, you will learn the fundamentals of the research process-from developing a good question to designing good data collection strategies to putting results in context. Although a data scientist may often play a key part in data analysis, the entire research process must work cohesively for valid insights to be gleaned.

Developed as a powerful and flexible language used in everything from Data Science to cutting-edge and scalable Artificial Intelligence solutions, Python has become an essential tool for doing Data Science and Machine Learning. With this edition of Data Science Research Methods, all of the labs are done with Python, while the videos are language-agnostic. If you prefer your Data Science to be done with R, please see Data Science Research Methods: R Edition.

Course Prerequisites

To complete this course successfully, you should have:

  • A basic knowledge of math
  • Some programming experience-Python is preferred.
  • A willingness to learn through self-paced study.

What you will learn

After completing this course, you will be familiar with the following concepts and techniques:

  • Data analysis and inference
  • Data science research design
  • Experimental data analysis and modeling

What’s included

  • The Research Process
  • Planning for Analysis
  • Research Claims
  • Measurement
  • Correlational and Experimental Design

Note: This syllabus is preliminary and subject to change.

Write Your Own Review

Only registered users can write reviews. Please Sign in or create an account

Free of Charge

Data Science Research Methods: Python Edition

Course 1

E-Learning

Data Science Research Methods: Python Edition

Microsoft DAT273x
Free of Charge
Microsoft
Open edX
90 days

Data scientists are often trained in the analysis of data. However, the goal of data science is to produce a good understanding of some problem or idea and build useful models on this understanding. Because of the principle of "garbage in, garbage out," it is vital that a data scientist know how to evaluate the quality of information that comes into a data analysis. This is especially the case when data are collected specifically for some analysis (e.g., a survey).

In this course, you will learn the fundamentals of the research process-from developing a good question to designing good data collection strategies to putting results in context. Although a data scientist may often play a key part in data analysis, the entire research process must work cohesively for valid insights to be gleaned.

Developed as a powerful and flexible language used in everything from Data Science to cutting-edge and scalable Artificial Intelligence solutions, Python has become an essential tool for doing Data Science and Machine Learning. With this edition of Data Science Research Methods, all of the labs are done with Python, while the videos are language-agnostic. If you prefer your Data Science to be done with R, please see Data Science Research Methods: R Edition.

See more See less

* Required Fields